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Abstract

Clustering is a standard method in the data analysis process that is utilised in various
domains such as pattern recognition and image segmentation, statistics, bioinformatics,
and so on. Because current reality applications generate huge datasets, determining how
to effectively deal with this data in a big mining process has proven to be a challenging
and enormous challenge. Clustering has a number of algorithms, the most well-known of
which is K-means that is centroid-based algorithm, and is well-known for its simplicity,
empirical success, and efficient for handling the large datasets. The present research
paper is designed to depicts a comparative analysis of the performance of centroid based
clustering algorithms that include K-means, K-means++ and Parallel K-means using
Message Passing Interface(MPI).

Keywords: Clustering, K-Means, Message passing Interface, Sequential, parallel
computing, data mining.

1 Introduction

Enterprises today are dealing with the massive size of data, which have been explosively
increasing. The key requirements to address this challenge are to extract, analyse, and
process data in a timely manner. Clustering is an essential data mining tool that plays an
important role for analysing the big data. However, large scale data clustering has become a
challenging task because of the large amount of information that emerges from technological
progress in many areas, including finance and business informatics.

Patterns identification groups such as feature vectors ,data items or other observation
done by supervised or unsupervised classification method, Clustering is belongs to the
method of unsupervised classification method .Objects with similar features are grouped
to form a cluster. Clustering has wide intrigue and has been applied to address many
field like data compression dimension reduction, feature selection, dimension reduction and
vector quantization. Requirement of an application decide the opinion of quality cluster.
There are a few strategies for discovering cluster utilizing techniques of splitting-merging,
neural networks, and distribution — based clustering. Centroid-based clustering arranges the
data into non-hierarchical clusters, in contrast to hierarchical clustering. In centroid —based



clustering there are many types among that K-means is the most widely-used one. Centroid-
based algorithms are efficient in grouping but sensitive to outliers and initial conditions[6].

K-means is a well-known clustering algorithm for its simplicity and easy implementation.
K-means was ranked second of top 10 algorithms in data mining by the ICDM Conference in
October 2006, while C4.5 was ranked first [11]. Compared with other clustering algorithms,
K-means algorithm has three major advantages covering simple implementation, efficient
when handling a large data sets and a solid theoretical foundation based on the greedy
optimization of Voronoi partition[8].

In addition, MPI (Message Passing Interface) is a library specification for message pass-
ing, which is proposed as a standard program model. MPI is an application programmer
interface of message passing, together with protocol and semantic specifications for how
its features must behave in any implementation[5]. MPI aims to maintain the high perfor-
mance, scalability and portability. The paper is organized as follows: Section 2 is a review
of some previously published work relating to the research is presented.The problem de-
scription and the method for providing a solution are then covered in Sections 3 and 4,
respectively.Section 5 presents the experiment results and performance evaluation.Finally,
Section 6 concludes the paper.

2 LITERATURE REVIEW

2.1 K-means Clustering Algorithm

K-means is one of the most famous partitional algorithms in cluster process. K-means has a
rich and various history as it was autonomously found in various logical fields by Steinhaus
(1956), Lloyd (proposed in 1957, distributed in 1982), Ball and Hall (1965), and MacQueen
(1967) . K-means is a method of data analysis. The objective is to partition N data objects
into K clusters (K<N) such that the objects in the same cluster are as similar as possible
and a dissimilar as possible in different clusters.[6].

Algorithml: K-Means clustering algorithm

The main steps of K-means algorithm are as follows[7] :

1. Select k points as initial centroids arbitrarily.

2. Calculate the distance (Euclidean Distance) between the rest data and k centroids.
Arrange each data into the nearest cluster. According to Euclidean Distance formula,
the distance between the two points in the plane with coordinates (x1,y1) and (z2, y2)

is given by:
d=/(ws —21)? + (42 — 1n)? (1)
3. After processing all the points, compute the average of all the records in each same
cluster.

4. The average of each cluster is used as the new centroid.

5. Calculate the difference between the new centroid with the original one in the same
cluster. If the difference is smaller than the threshold or the number of iterations of
the algorithm has been reached for the maximum, the algorithm is over. Otherwise,
the new centroid is substituted for the original ones. Return (2) and continue until
the convergence is achieved and obtain the final cluster .
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Figure 1: Tllustration of K-means algorithm. (a) Two-dimensional input data with three
clusters; (b) three seed points selected as cluster centers and initial assignment of the data
points to clusters; (c) and (d) intermediate iterations updating cluster labels and their
centers; (e) final clustering obtained by K-means algorithm at convergence. 6]

The K-means algorithm requires three user-specified parameters: number of clusters K,
cluster initialization, and distance metric. The most critical choice is K. Typically, K-means
is run independently for different values of K and the partition that appears the most mean-
ingful to the domain expert is selected. Different initializations can lead to different final
clustering because K-means only converges to local minima. One way to overcome the local
minima is to run the K-means algorithm, for a given K, with multiple different initial par-
titions and choose the partition with the smallest squared error. K-means is typically used
with the Euclidean metric for computing the distance between points and cluster centers.
As a result, K-means finds spherical or ball-shaped clusters in data.

2.2 Limitation of K-means:

The main critical problem of this algorithm is that it might be blocked locally based on
the initial random chosen centers. The k-means++ algorithm is developed to solve this
problem, spreading out the initial centers with an updating non-uniform distribution[2].

2.3 To overcome the limitation of K-means, we use K-means+-+ Algo-
rithm:

The K-means++ algorithm is identical to k-means except the initialization of centers. K-
means++ tries to choose a set of carefully selected initial centers instead of random ini-
tialization .This algorithm ensures a smarter initialization of centroids and ameliorate the
quality of clustering. The k-means algorithm begins with an arbitrary set of cluster cen-



ter. At any given time, let D’(m) denote the shortest distance from a data point m to the
closest center we have already chosen, the initialization step of k-means++ can be defined
as[2],[10]:

1. Choose an initial center ¢y uniformly at random from M where M is a set of datapoints.
2. Choose the next center ¢;, selecting ¢; = meM with probability proportional to
D’(m)2

ZmeM D(m)2 (2)

3. Repeat Step (2) until we have chosen a total of k centers

4. Proceed as with the standard k-means algorithm

Algorithm 2. k-means++ centers initialization.

1: procedure k-Means + + (M, k)

2:  Choose a center ¢ randomly from dataset.
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Figure 2: K-mean++ Algorithm.[10]

2.4 Message Passing Interface

Message Passing Interface (MPI) is a standard developed by the Message Passing Interface
Forum (MPIF). MPI is a standard library specification designed to support parallel com-
puting in a distributed memory environment. The first version (versionl.0) was published
in 1994 and the second version (MPI-2) was published in 1997 [4]. Both point to point and
collective communication are supported. MPI is an API library consisting of hundreds of
function interfaces called by computers such as computer clusters communicate with one
another in the parallel development environment. MPI is a language-independent commu-
nications protocol. FORTRAN, C and C++ can directly call the API library. The goals of
MPI are high performance, scalability and portability.
The standards of MPT are as follows][1]:

1. Point-to-point communication

[\)

. Collective operations
3. Process groups

4. Communication contexts



5. Process topologies
6. Bindings for Fortran 77 and C
7. Environmental management and inquiry

8. Profiling interface

2.5 Parallel K-means Algorithm

Parallelized in basic have same meaning in partition data so data can be execute in same
time. In parallel system, the main idea is partition to each processes so the processes will
have same amount of data and can do the processes in same time. Each computer can do
the algorithm, and have centroid in each process. After that, the result of each process will
be merged in head node[9].

Parallel K-Means Algorithm

Input: Data. K Cluster

Output: K Centroid

1: MPI_INIT// start MPI Procedure
2: Read N object from file

¥/start parallel proccess by divide same amount of object to each processes/*

3: repeat

4:Choose K point as intial centroid randomly

5: Initiate each object to the closest centroid by using Euclidean Distance Formula
6: until centroid don’t change

¥/merge centroid procedure /*

7: Generate cluster id to each object

8: Generate new centroid cluster by centroid result in each processes

9: Generate final centroid
10: MPI Finalize() // Terminate MPI Process

Figure 3: Parallel K-means Algorithm.[9]

The above Algorithm explain the processing flow of our parallel K means algorithm,
which is the key algorithm in our work. This algorithm utilizes K-means and the MPI
parallel framework, it is hence simple and portable. All initialization is implemented by
the MPI _INIT function, which is the first call of MPI program. It is the first executable
statement of all of the MPI program. To start the MPI environment, it means the beginning
of the parallel codes. The MPI _FINALIZE function is the last call of MPI program, and
it ends the running of MPI program. It is the last executable statement of MPI program,
otherwise, results of the procedure is unpredictable. MPI_FINALIZE symbolizes the end
of the parallel codes.In our Parallel Kmeans algorithm, the parallelism is implemented by



the data parallelism. The parallel processing in Parallel Kmeans is consistent with that
of K means. Data objects are evenly partitioned in all processes and cluster centroids are
replicated. The global operation for all cluster centroids is performed at the end of each
iteration in order to generate new cluster centroids. Finally, output the clustering results: K
centroids, I/O time and clustering time[13],[9].From the above discussion it can be observed
at the end of this paper that Parallel configuration of K-means is very good approach in
context of dealing with bulkier datasets.

3 Problem Statement

In this day and age, handling the large datasets is a very arduous and challenging task for
most of the enterprises. With the advancement in science and technology makes collection
of data and storage much easier and very inexpensive than ever before. This led to the
formation of enormous datasets in science, MNC’s, health care sector, business sector,
social networking and so on, which should be processed or sorted to get useful information.
For example if we consider the results generated by a search engine for a particular query,
user has to shift through the long lists and find the desired solution. But this job can be
very difficult for the user if there are millions of web pages displayed as solutions for a given
query. Moreover, while performing operations on huge datasets by data scientists, so as
to create different machine learning models, sometimes due to lack of parallelism it takes
a lot of time to deliver the results. This paper tries to reflect comparative analysis of the
different types of centroid based clustering techniques such as K-means, K-means++ and
Parallel K-means using MPI in order to tackle with these large datasets not only in effective
way but also in timely manner.

4 Proposed Solution

In order to conduct the performance analysis of centroid based clustering algorithm, I used
the real-world dataset that is 3D Road Network (North Jutland, Denmark) Data Set[3].
While performing K-means clustering algorithm on 3D Road Network (North Jutland, Den-
mark) Data Set, the results that I got is impressive, nonetheless, still there is a limitation of
K-means that is sensitivity initialization, and owing to this it consumes time while operat-
ing on the large datasets. To overcome this limitation, I use K-means++ which is effective
way than K-means and the outcomes that I obtained is better than that of the K-means.

But still there is one missing factor that boost the performance of these algorithm sig-
nificantly and this factor is Parallelism. As I mentioned above in the problem statement
that instead of focusing on handling the large datasets we must focus on how to reduce
the operating time of these algorithms. So, Parallel K-means using MPI(Message Passing
Interface) framework is effective idea and by implementing it, the results that I achieved
are outstanding as the operating time reduces sharply and overall performance is improved
markedly. In order to implement the Parallel K-means using MPI framework, I utilize the
“mpidpy” library of python language and it is a very powerful library that allows the python
applications to execute in a parallel environment and improve the runtime performance.

MPI _Init thread() is called at import time by mpidpy, which also installs an exit hook
automatically that calls MPI Finalize() just before the Python process terminates. In



MPI for python, comm is the base class of communicators which allows the communication
among the processes.Figure 4 describes the main working of Parallel K-means. First of all,
broadcast the start time from rank=0 to other ranks and then scatter the equal chunks
of dataset between each processes and then broadcast the centroid matrix to each process.
After that realize the sequential algorithm and calculate the distance matrix and determine
clustering vectors in each process.In the end, gather the means of centroid from each process
by summing them.

start_time = comm.bcast(stert_time, root=0)
data = comm.scatter({chunks, root=0)
num_clusters = comm.bcast({num_clusters, root=0)
initial = comm.bcast(initial, root=0)
flag = True
while flag = True:

clusters = []

cluster = []

#lolcula g dist matrix in each proc

dist = np.zeros(({len(data), len(initiall))

for j in range(len(initial)):
for 1 in range(len{datal):
dist[i][j] = np.linalg.norm(initiall[j] - datalil)

for 1 in range(Llen{dist]):
clusters.append(np.argnin(dist[1]) + 1)
# Colculo

Q_clusts = collections.Counter(clusters)

g the number of somples in eoch cluster

#5vmming the number of samples for each cluster
counterSumlp = WPI.0p.Create(addCounter, commute=True)
totcounter = comm.allreduce(_clusts, op=counterSum0p)

comm.Barrier()

From eoch worker we go

cluster = comm.gather(clusters, root=0)
comnm. Barrier()

if rank = 0:
cluster = [item for sublist in cluster for item in sublist]
centroids = np.zeros((len(initial), len(initial[8]1))
for k in range(l, num_clusters + 1):
indices = [i for i, j in enumerate(clusters) if j = k]
centroids[k - 1] = np.divide((np.sum{[data[i] for i in indices], axis=0)).astype(np.float), totcounterlk])

centroild = comm.allreduce(centrolds, HPI.SUH)
conm.Barrier()

if np.allicentroid = initiall):
flag = False
print("Execution time %s seconds” % (time.time() - start_timel)

else:

initial = centroid
conm.Barrier()

Figure 4: Main part of code for Parallel K-means



5 Experimental Evaluation

In this paper, the computation time of K-means, K-means++ and Parallel K-means is used
as a performance metric and regarding the evaluation for quality of clustering, the SSE
(Sum of Squared Error) is utilized as a performance measure.

5.1 Cluster Evaluation

Cluster evaluation is a part of clustering analysis. Because the algorithm using Euclidean
Distance formula as closeness measurement, so the objective function that can be used for
measure the quality of cluster is Sum Squared of Error (SSE). SSE shows the compactness
of clusters and a lower SSE means a better clustering .The explanation of the formula is
explained below [9]:

k
SSE =Y "dist(c;,x)* (3)

1=1 xec;

An Elbow Method:

The basic idea of the elbow rule is to use a square of the distance between the sample
points in each cluster and the centroid of the cluster to give a series of K values. The
sum of squared errors (SSE) is used as a performance indicator. Iterate over the K-value
and calculate the SSE is the basic idea. Smaller values indicate that each cluster is more
convergent. When the number of clusters is set to approach the number of real clusters, SSE
shows a rapid decline. When the number of clusters exceeds the number of real clusters,
SSE will continue to decline but it will quickly become slower.[12]

5.2 Experimental Setup

The following results are obtained when comparing the K-means, K-means++ and Parallel
K-means in Intel i5-7400 4 core CPU @ 3.0 GHz. The implementation of these algorithms
are done by using the python language. As far as machine learning library is concerned, I
use “Scikit- learn” library which is specially build for Python programming language and
features various classification and clustering algorithms. And for data visualization mat-
plotlib library is used which is an amazing library in python for 2D graphics.I use Anaconda
3 Navigator for the execution environment.

Dataset

3D Road Network (North Jutland, Denmark) Data Set [3]: This dataset was constructed
by adding elevation information to a 2D road network in North Jutland, Denmark (covering
a region of 185X 135km? ). IT contains 434874 samples and 4 features. Feature information:

1. OSM ID: Open Street Map ID for each road segment or edge in the graph.
2. LONGITUDE: Web Mercaptor (Google format) longitude
3. LATITUDE: Web Mercaptor (Google format) latitude

4. ALTITUDE: Height in meters.



5.3 Result

The table below presents the runtime of each experiment. Experiments are conducted for
the number of clusters k={2,3} and the number of processes np={2, 3,4,5,6,7,8}.

No.of np2 np3 np4 npb np6 np7 np8 K- K-
clusters means | means4-r

K=2 28.080 26.107 23.447 23.562 25.419 25.297 26.100 35.078 26.121

K=3 56.962 50.313 47.342 48.850 48.724 52.765 51.174 67.405 61.001

Table 1:The run-times (in seconds) of parallel, sequential K-means and K-means++ clus-
tering algorithm on 3D Road Network dataset with 10 samples.

It is noticed that the most favourable outcome for a particular dataset is achieved on
4 processes while parallelise the K-means using Message Passing Interface. Meanwhile,
the computation time of K-means++ is better than K-means.The performance comparison
based on computation time of the algorithms is illustrated by the Figure 5 and Figure 6.

FOR K=2
== Parallel K-Means  =—=—K-Means K-Means++
40
35 = i i L i = i
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NUMBER OF PROCESSES

Figure 5: Graphical representation of computation time for two clusters.
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Figure 6: Graphical representation of computation time for three clusters.

Table 2 depicts the sum of squared error by taking the no. of clusters(K-value) from 1
to 10 for a given dataset using the Elbow Method and the figure below shows its graphical
representation.It is cleared from Figure 7 that SSE value reduces drastically from K=1 to
K=3 and this point is the turning point or elbow point and after this point the SSE value
gradually decreases to K=10.As a result, the optimal number of clusters for a given given
dataset is K=3.

No. of clusters | Sum of Squared Error
1 35270371.038211636
11218117.421842316
5052998.234094211
3008844.9873317108
1940707.897814192
1412389.355230099
1045570.2353036918
812220.1138217078
656958.9712808387
557132.352831361

O[O0 || U = | W N

—
o

Table 2: Demonstrates the Sum of Squared Error(SSE) values for K=1 to 10.

10



Text(®, 8.5, 'Sum of squared error')

1=7

35 -

301

Ln ] LA

Sum of squared error

]
L]

05 A

00

2 4 &
no. of clusters

0
[
=

Figure 7: Representation of Elbow Method showing the optimal no. of clusters.

6 Conclusion

The main objective of this paper is to compare the performance of centroid based clustering
algorithms while operating on huge datasests.In this paper, different clustering algorithms
have been studied and assessed, in order to distinguish between their ability to perform
efficiently on a big volume of data.When compared to K-means and K-means++-, the ex-
perimental findings of two and three cluster formation reveal that K-means with parallel
configuration is realtively faster, more stable, portable, and it is more efficient in clustering
on big data sets.
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