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1 Introduction

Enterprises today are dealing with the massive size of data, which have been explosively
increasing. The key requirements to address this challenge are to extract, analyse, and
process data in a timely manner. Clustering is an essential data mining tool that plays an
important role for analysing the big data. However, large scale data clustering has become a
challenging task because of the large amount of information that emerges from technological
progress in many areas, including finance and business informatics.

Patterns identification groups such as feature vectors ,data items or other observation
done by supervised or unsupervised classification method, Clustering is belongs to the
method of unsupervised classification method .Objects with similar features are grouped
to form a cluster. Clustering has wide intrigue and has been applied to address many
field like data compression dimension reduction, feature selection, dimension reduction and
vector quantization. Requirement of an application decide the opinion of quality cluster.
There are a few strategies for discovering cluster utilizing techniques of splitting-merging,
neural networks, and distribution – based clustering. Centroid-based clustering arranges the
data into non-hierarchical clusters, in contrast to hierarchical clustering. In centroid –based
clustering there are many types among that K-means is the most widely-used one. Centroid-
based algorithms are efficient in grouping but sensitive to outliers and initial conditions[5].

K-means is a well-known clustering algorithm for its simplicity and easy implementation.
K-means was ranked second of top 10 algorithms in data mining by the ICDM Conference in
October 2006, while C4.5 was ranked first [10]. Compared with other clustering algorithms,
K-means algorithm has three major advantages covering simple implementation, efficient
when handling a large data sets and a solid theoretical foundation based on the greedy
optimization of Voronoi partition[7].

In addition, MPI (Message Passing Interface) is a library specification for message pass-
ing, which is proposed as a standard program model. MPI is an application programmer
interface of message passing, together with protocol and semantic specifications for how
its features must behave in any implementation[4]. MPI aims to maintain the high perfor-
mance, scalability and portability.

In this project, I mainly focused on performance analysis of Centroid Technique based
clustering algorithms that include K-means, K-means++ and Parallel K-means using Mes-
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saging Passing Interface i.e. MPI and would like to find out which one of these is effectively
performed on the datasets.

2 LITERATURE REVIEW

2.1 K-means Clustering Algorithm

K-means is one of the most famous partitional algorithms in cluster process. K-means has a
rich and various history as it was autonomously found in various logical fields by Steinhaus
(1956), Lloyd (proposed in 1957, distributed in 1982), Ball and Hall (1965), and MacQueen
(1967) . K-means is a method of data analysis. The objective is to partition N data objects
into K clusters (K<N) such that the objects in the same cluster are as similar as possible
and a dissimilar as possible in different clusters[5].

Algorithm1: K-Means clustering algorithm
The main steps of K-means algorithm are as follows[6] :

1. Select k points as initial centroids arbitrarily.

2. Calculate the distance (Euclidean Distance) between the rest data and k centroids.
Arrange each data into the nearest cluster. According to Euclidean Distance formula,
the distance between the two points in the plane with coordinates (x1, y1) and (x2, y2)
is given by:

d =
√

(x2 − x1)2 + (y2 − y1)2 (1)

3. After processing all the points, compute the average of all the records in each same
cluster.

4. The average of each cluster is used as the new centroid.

5. Calculate the difference between the new centroid with the original one in the same
cluster. If the difference is smaller than the threshold or the number of iterations of
the algorithm has been reached for the maximum, the algorithm is over. Otherwise,
the new centroid is substituted for the original ones. Return (2) and continue until
the convergence is achieved and obtain the final cluster .

The K-means algorithm requires three user-specified parameters: number of clusters K,
cluster initialization, and distance metric. The most critical choice is K. Typically, K-means
is run independently for different values of K and the partition that appears the most mean-
ingful to the domain expert is selected. Different initializations can lead to different final
clustering because K-means only converges to local minima. One way to overcome the local
minima is to run the K-means algorithm, for a given K, with multiple different initial par-
titions and choose the partition with the smallest squared error. K-means is typically used
with the Euclidean metric for computing the distance between points and cluster centers.
As a result, K-means finds spherical or ball-shaped clusters in data.
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Figure 1: Illustration of K-means algorithm. (a) Two-dimensional input data with three
clusters; (b) three seed points selected as cluster centers and initial assignment of the data
points to clusters; (c) and (d) intermediate iterations updating cluster labels and their
centers; (e) final clustering obtained by K-means algorithm at convergence.[5]

2.2 Limitation of K-means:

The main critical problem of this algorithm is that it might be blocked locally based on
the initial random chosen centers. The k-means++ algorithm is developed to solve this
problem, spreading out the initial centers with an updating non-uniform distribution[2].

2.3 To overcome the limitation of K-means, we use K-means++ Algo-
rithm:

The K-means++ algorithm is identical to k-means except the initialization of centers. K-
means++ tries to choose a set of carefully selected initial centers instead of random ini-
tialization .This algorithm ensures a smarter initialization of centroids and ameliorate the
quality of clustering. The k-means algorithm begins with an arbitrary set of cluster center.
At any given time, let D’(m) denote the shortest distance from a data point m to the closest
center we have already chosen, the initialization step of k-means++ can be defined as[2],[9]:

1. Choose an initial center c1 uniformly at random from M where M is a set of datapoints.

2. Choose the next center ci, selecting ci = mϵM with probability proportional to

D′(m)2∑
mϵM D(m)2

(2)

3. Repeat Step (2) until we have chosen a total of k centers

4. Proceed as with the standard k-means algorithm
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Figure 2: K-mean++ Algorithm.[9]

2.4 Message Passing Interface

Message Passing Interface (MPI) is a standard developed by the Message Passing Interface
Forum (MPIF). MPI is a standard library specification designed to support parallel com-
puting in a distributed memory environment. The first version (version1.0) was published
in 1994 and the second version (MPI-2) was published in 1997 [3]. Both point to point and
collective communication are supported. MPI is an API library consisting of hundreds of
function interfaces called by computers such as computer clusters communicate with one
another in the parallel development environment. MPI is a language-independent commu-
nications protocol. FORTRAN, C and C++ can directly call the API library. The goals of
MPI are high performance, scalability and portability.

The standards of MPI are as follows[1]:

1. Point-to-point communication

2. Collective operations

3. Process groups

4. Communication contexts

5. Process topologies

6. Bindings for Fortran 77 and C

7. Environmental management and inquiry

8. Profiling interface

2.5 Parallel K-means Algorithm

Parallelized in basic have same meaning in partition data so data can be execute in same
time. In parallel system, the main idea is partition to each processes so the processes will
have same amount of data and can do the processes in same time. Each computer can do
the algorithm, and have centroid in each process. After that, the result of each process will
be merged in head node[8].
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Figure 3: Parallel K-means Algorithm.[8]

The above Algorithm explain the processing flow of our parallel K means algorithm,
which is the key algorithm in our work. This algorithm utilizes K-means and the MPI
parallel framework, it is hence simple and portable. All initialization is implemented by
the MPI INIT function, which is the first call of MPI program. It is the first executable
statement of all of the MPI program. To start the MPI environment, it means the beginning
of the parallel codes. The MPI FINALIZE function is the last call of MPI program, and
it ends the running of MPI program. It is the last executable statement of MPI program,
otherwise, results of the procedure is unpredictable. MPI FINALIZE symbolizes the end
of the parallel codes.In our Parallel Kmeans algorithm, the parallelism is implemented by
the data parallelism. The parallel processing in Parallel Kmeans is consistent with that
of K means. Data objects are evenly partitioned in all processes and cluster centroids are
replicated. The global operation for all cluster centroids is performed at the end of each
iteration in order to generate new cluster centroids. Finally, output the clustering results: K
centroids, I/O time and clustering time[11],[8].From the above discussion it can be observed
at the end of this paper that Parallel configuration of K-means is very good approach in
context of dealing with bulkier datasets.
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